
Rabin-Karp algorithm
Robin Visser

What is Rabin-Karp?

What is Rabin-Karp?

 String searching algorithm

What is Rabin-Karp?

 String searching algorithm

 Uses hashing

What is Rabin-Karp?

 String searching algorithm

 Uses hashing

(e.g. hash(“answer”) = 42)

Algorithm

Algorithm

function RabinKarp(string s[1..n], string sub[1..m])

hsub := hash(sub[1..m]); hs := hash(s[1..m])

for i from 1 to n-m+1

 if hs = hsub

 if s[i..i+m-1] = sub

 return i

 hs := hash(s[i+1..i+m])

return not found

Algorithm

function RabinKarp(string s[1..n], string sub[1..m])

hsub := hash(sub[1..m]); hs := hash(s[1..m])

for i from 1 to n-m+1

 if hs = hsub

 if s[i..i+m-1] = sub

 return i

 hs := hash(s[i+1..i+m])

return not found

Naïve implementation: Runs in O(nm)

Hash function

Hash function

 Use rolling hash to compute the next

hash value in constant time

Hash function

 Use rolling hash to compute the next

hash value in constant time

Example: If we add the values of each character in the substring as

our hash, we get:

hash(s[i+1..i+m]) = hash(s[i..i+m-1]) – hash(s[i])

+ hash(s[i+m])

Hash function

 A popular and effective hash function treats

every substring as a number in some base,

usually a large prime.

Hash function

 A popular and effective hash function treats

every substring as a number in some base,

usually a large prime.

(e.g. if the substring is “IOI" and the base is 101, the

hash value would be 73 × 1012 + 79 × 1011 + 73 ×

1010 = 752725)

Hash function

 A popular and effective hash function treats

every substring as a number in some base,

usually a large prime.

(e.g. if the substring is “IOI" and the base is 101, the

hash value would be 73 × 1012 + 79 × 1011 + 73 ×

1010 = 752725)

Due to the limited size of the integer data type,

modular arithmetic must be used to scale down the

hash result.

How is this useful

How is this useful

 Inferior to KMP algorithm and Boyer-Moore algorithm

for single pattern searching, however can be used

effectively for multiple pattern searching.

How is this useful

 Inferior to KMP algorithm and Boyer-Moore algorithm

for single pattern searching, however can be used

effectively for multiple pattern searching.

 We can create a variant, using a Bloom filter or a set

data structure to check whether the hash of a given

string belongs to a set of hash values of patterns we are

looking for.

How is this useful

Consider the following variant:

How is this useful

Consider the following variant:

function RabinKarpSet(string s[1..n], set of string

subs, m):

 set hsubs := emptySet

 for each sub in subs

 insert hash(sub[1..m]) into hsubs

 hs := hash(s[1..m])

 for i from 1 to n-m+1

 if hs ∈ hsubs and s[i..i+m-1] ∈ subs

 return i

 hs := hash(s[i+1..i+m])

 return not found

How is this useful

 Runs in O(n + k) time, compared to O(nk) time

when searching each string individually.

How is this useful

 Runs in O(n + k) time, compared to O(nk) time

when searching each string individually.

 Note that a hash table checks whether a

substring hash equals any of the pattern hashes

in O(1) time on average.

Questions?

