
Rabin-Karp algorithm
Robin Visser

What is Rabin-Karp?

What is Rabin-Karp?

 String searching algorithm

What is Rabin-Karp?

 String searching algorithm

 Uses hashing

What is Rabin-Karp?

 String searching algorithm

 Uses hashing

(e.g. hash(“answer”) = 42)

Algorithm

Algorithm

function RabinKarp(string s[1..n], string sub[1..m])

hsub := hash(sub[1..m]); hs := hash(s[1..m])

for i from 1 to n-m+1

 if hs = hsub

 if s[i..i+m-1] = sub

 return i

 hs := hash(s[i+1..i+m])

return not found

Algorithm

function RabinKarp(string s[1..n], string sub[1..m])

hsub := hash(sub[1..m]); hs := hash(s[1..m])

for i from 1 to n-m+1

 if hs = hsub

 if s[i..i+m-1] = sub

 return i

 hs := hash(s[i+1..i+m])

return not found

Naïve implementation: Runs in O(nm)

Hash function

Hash function

 Use rolling hash to compute the next

hash value in constant time

Hash function

 Use rolling hash to compute the next

hash value in constant time

Example: If we add the values of each character in the substring as

our hash, we get:

hash(s[i+1..i+m]) = hash(s[i..i+m-1]) – hash(s[i])

+ hash(s[i+m])

Hash function

 A popular and effective hash function treats

every substring as a number in some base,

usually a large prime.

Hash function

 A popular and effective hash function treats

every substring as a number in some base,

usually a large prime.

(e.g. if the substring is “IOI" and the base is 101, the

hash value would be 73 × 1012 + 79 × 1011 + 73 ×

1010 = 752725)

Hash function

 A popular and effective hash function treats

every substring as a number in some base,

usually a large prime.

(e.g. if the substring is “IOI" and the base is 101, the

hash value would be 73 × 1012 + 79 × 1011 + 73 ×

1010 = 752725)

Due to the limited size of the integer data type,

modular arithmetic must be used to scale down the

hash result.

How is this useful

How is this useful

 Inferior to KMP algorithm and Boyer-Moore algorithm

for single pattern searching, however can be used

effectively for multiple pattern searching.

How is this useful

 Inferior to KMP algorithm and Boyer-Moore algorithm

for single pattern searching, however can be used

effectively for multiple pattern searching.

 We can create a variant, using a Bloom filter or a set

data structure to check whether the hash of a given

string belongs to a set of hash values of patterns we are

looking for.

How is this useful

Consider the following variant:

How is this useful

Consider the following variant:

function RabinKarpSet(string s[1..n], set of string

subs, m):

 set hsubs := emptySet

 for each sub in subs

 insert hash(sub[1..m]) into hsubs

 hs := hash(s[1..m])

 for i from 1 to n-m+1

 if hs ∈ hsubs and s[i..i+m-1] ∈ subs

 return i

 hs := hash(s[i+1..i+m])

 return not found

How is this useful

 Runs in O(n + k) time, compared to O(nk) time

when searching each string individually.

How is this useful

 Runs in O(n + k) time, compared to O(nk) time

when searching each string individually.

 Note that a hash table checks whether a

substring hash equals any of the pattern hashes

in O(1) time on average.

Questions?

