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function RabinKarp(string s[1..n], string sub[1..m])  

hsub := hash(sub[1..m]); hs := hash(s[1..m])  

for i from 1 to n-m+1  

 if hs = hsub  

 if s[i..i+m-1] = sub  

  return i  

 hs := hash(s[i+1..i+m])  

return not found 
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for i from 1 to n-m+1  

 if hs = hsub  
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return not found 

 

Naïve implementation:   Runs in O(nm) 
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Hash function 

 Use rolling hash to compute the next 

hash value in constant time 

Example:  If we add the values of each character in the substring  as 

our hash, we get: 
 
hash(s[i+1..i+m]) = hash(s[i..i+m-1]) – hash(s[i]) 

+ hash(s[i+m]) 
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every substring as a number in some base, 

usually a large prime. 
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1010 = 752725) 



Hash function 

 A popular and effective hash function treats 

every substring as a number in some base, 

usually a large prime. 

 
(e.g. if the substring is “IOI" and the base is 101, the 

hash value would be 73 × 1012 + 79 × 1011  + 73 × 

1010 = 752725) 

 
Due to the limited size of the integer data type, 

modular arithmetic must be used to scale down the 

hash result. 
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effectively for multiple pattern searching. 

 

 We can create a variant, using a Bloom filter or a set 

data structure to check whether the hash of a given 

string belongs to a set of hash values of patterns we are 

looking for. 
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How is this useful 

Consider the following variant: 

function RabinKarpSet(string s[1..n], set of string 

subs, m):  

 set hsubs := emptySet  

 for each sub in subs  

 insert hash(sub[1..m]) into hsubs  

 hs := hash(s[1..m])  

 for i from 1 to n-m+1  

 if hs ∈ hsubs and s[i..i+m-1] ∈ subs  

 return i  

 hs := hash(s[i+1..i+m])  

 return not found 

 



How is this useful 

 Runs in O(n + k) time, compared to O(nk) time 

when searching each string individually. 



How is this useful 

 Runs in O(n + k) time, compared to O(nk) time 

when searching each string individually. 

 

 Note that a hash table checks whether a 

substring hash equals any of the pattern hashes 

in O(1) time on average. 



Questions? 


